PERAMALAN GENRE FILM TERPOPULER BERDASARKAN DATASET MYMOVIE MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)
DOI:
https://doi.org/10.31949/infotech.v9i2.7358Abstract
At this time the film industry is experiencing very rapid progress, this is because extraordinary technological developments have had a major influence on the film industry. Successful films tend to have a large audience. To find out why the audience likes a film, there are several variables that must be considered, one of which is the genre of the film. This research was conducted to predict what film genres the audience is most interested in. To predict the genre of this film using the autoregressive integrated moving average (arima) method. The autoregressive integrated moving average (arima) method or commonly known as the Box-Jenkins method is a method used to make precise and accurate short-term forecasts, compared to long-term forecasts which usually tend to be flat (flat/constant). From this research a prediction of the popularity or number of viewers of each film genre will be generated which can be used as a reference to find out what genre of film the audience is interested in. So that film production companies can adjust film releases according to their interests. audience, in order to gain greater profits.
Keywords:
film industry, autoregressive integrated moving average (arima), forecastingDownloads
References
Agribisnis, J., Utara, S., Statistisi, F., Pusat, B., Utara, P. S., Kajian, A., Utara, S., Autoregressive, M., Moving, I., Utara, P. S., Utara, S., & Utara, S. (2019). Penerapan Autoregressive Integrated Moving Average (ARIMA) Pada Peramalan Produksi Kedelai di Sumatera Utara. 9(2).
Arianto, J. (2019). Penerapan Data Mining Untuk Pengelompokan Penduduk Kurang Mampu Desa Sambirejo Timur Dengan Algoritma K-Medoids (Studi Kasus Kantor Kepala Desa Sambirejo Timur). KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 569–573. https://doi.org/10.30865/komik.v3i1.1660
As’ad, M., Wibowo, S. S., & Sophia, E. (2017). Peramalan Jumlah Mahasiswa Baru Dengan Model Autoregressive Integrated Moving Average (Arima). J I M P - Jurnal Informatika Merdeka Pasuruan, 2(3), 20–33. https://doi.org/10.37438/jimp.v2i3.77
Asri, R. (2020). Membaca Film Sebagai Sebuah Teks: Analisis Isi Film “Nanti Kita Cerita Tentang Hari Ini (NKCTHI).” Jurnal Al Azhar Indonesia Seri Ilmu Sosial, 1(2), 74. https://doi.org/10.36722/jaiss.v1i2.462
Doktor, P., Pertanian, I., Pertanian, F., Padjadjaran, U., & Jatinangor, K. U. (n.d.). ( the Importance of Time Series Data in Production Planning ). 2011, 582–589.
Hartati, H. (2017). Penggunaan Metode Arima Dalam Meramal Pergerakan Inflasi. Jurnal Matematika Sains Dan Teknologi, 18(1), 1–10. https://doi.org/10.33830/jmst.v18i1.163.2017
John, D. R., & Latupeirissa, S. J. (2021). Peramalan Harga Emas Di Indonesia Tahun 2014-2019 Dengan Metode Arima Box-Jenkins. VARIANCE: Journal of Statistics and Its Applications, 2(2), 53–62. https://doi.org/10.30598/variancevol2iss2page53-62
Matematika, J. I., & Ruspriyanty, D. I. (2018). MATH unesa. 6(2), 75–80.
Maulana, H. A. (2018). Pemodelan Deret Waktu Dan Peramalan Curah Hujan Pada Dua Belas Stasiun Di Bogor. Jurnal Matematika Statistika Dan Komputasi, 15(1), 50. https://doi.org/10.20956/jmsk.v15i1.4424
Mayangky, N. A., Kholifah, D. N., Balla, I., & Thira, I. J. (2019). Pengaruh Rating Film Terhadap Jumlah Audience Yang Menonton Film. Indonesian Journal on Software Engineering (IJSE), 5(2), 113–120. https://doi.org/10.31294/ijse.v5i2.6963
Meilani, B. D., Susanti, N., Informatika, J. T., Informasi, F. T., Teknologi, I., & Tama, A. (2014). Akurasi Data Mining Untuk Menghasilkan Pola Kelulusan Mahasiswa dengan Metode NAÏVE BAYES. Jurnal Sistem Informasi Universitas Suryadarma, 3(2), 182–189. https://doi.org/10.35968/jsi.v3i2.66
Ning, X., Yac, L., Wang, X., Benatallah, B., Dong, M., & Zhang, S. (2020). Rating prediction via generative convolutional neural networks based regression. Pattern Recognition Letters, 132, 12–20. https://doi.org/10.1016/j.patrec.2018.07.028
Nurfadila, K., & Ilham Aksan. (2020). Aplikasi Metode Arima Box-Jenkins Untuk Meramalkan Penggunaan Harian Data Seluler. Journal of Mathematics : Theory and Application, 2(1), 5–10. https://doi.org/10.31605/jomta.v2i1.749
Perencanaan, M., Di, P., & Skk, P. T. (n.d.). Kata kunci : perencanaan produksi, peramalan,. 133–141.
Prasetyo, V. R., Mercifia, M., Averina, A., Sunyoto, L., & Budiarjo. (2022). Film Rating Prediction on Imdb Website Using Neural Network. Jurnal Ilmiah NERO, 7(1), 60293.
Rerung, R. R. (2018). Penerapan Data Mining dengan Memanfaatkan Metode Association Rule untuk Promosi Produk. Jurnal Teknologi Rekayasa, 3(1), 89. https://doi.org/10.31544/jtera.v3.i1.2018.89-98
Salwa, N., Tatsara, N., Amalia, R., & Zohra, A. F. (2018). Peramalan Harga Bitcoin Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average). Journal of Data Analysis, 1(1), 21–31. https://doi.org/10.24815/jda.v1i1.11874
Simbolon, L. D. (2022). Penerapan Model Arima Dalam Memprediksi Harga Emas. MES: Journal of Mathematics Education and Science, 7(2), 30–41. https://doi.org/10.30743/mes.v7i2.5139
Somvanshi, M. (2016). Iccubea.2016.7860040.
Sulastri, H., & Gufroni, A. I. (2017). Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia. Jurnal Nasional Teknologi Dan Sistem Informasi, 3(2), 299–305. https://doi.org/10.25077/teknosi.v3i2.2017.299-305
Teapon, R. R. H. (2015). Pembentukan Model Arima Untuk Peramalan Inflasi Kelompok Bahan Makanan Di Kota Ternate. Ekonomi, 04(01), 13–30.
Winanda, O. I., & Zega, S. A. (2019). Prediksi Rating Film Animasi Berdasarkan Elemen Mise En Scene Menggunakan Neural Network. https://jurnal.polibatam.ac.id/index.php/JAMN/article/download/1427/862
Yosafat, A. R., & Kurnia, Y. (2019). Aplikasi Prediksi Rating Film dengan Perbandingan Metode Naïve Bayes dan KNN Berbasis Website Menggunakan Framework Codeigniter. Jurnal ALGOR, 1(1), 16–26.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Asrul, Wina Witanti, Fajri Rakhmat Umbara

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.