OPTIMASI STRATEGI TOOLPATH CNC DENGAN GREY RELATIONAL ANALYSIS UNTUK MENINGKATKAN EFISIENSI PEMESINAN

Authors

  • Sihmaulana Dwianto Politeknik Negeri Jember
  • Tunjung Genarsih Politeknik Negeri Jember
  • Ardianto Syaifur Rohman Politeknik Negeri Jember

DOI:

https://doi.org/10.31949/j-ensitec.v11i02.13808

Abstract

This study aims to optimize CNC toolpath strategies using Grey Relational Analysis (GRA) to enhance machining efficiency. Five toolpath strategies—Zigzag, Constant Overlap Spiral, Parallel Spiral, One Way, and True Spiral—are systematically evaluated based on spindle speed, feed rate, depth of cut, and step over, assessing their impact on machining performance.The machining process is conducted using a 3-axis CNC milling machine equipped with a 10 mm diameter endmill tool. Data collection is performed through Mastercam software, where numerical simulations precede the application of Grey Relational Coefficient (GRC) and Grey Relational Grade (GRG) computations to determine the optimal toolpath strategy.The results indicate that the Zigzag toolpath, configured with a spindle speed of 1300 RPM, feed rate of 700 mm/min, depth of cut of 0.8 mm, and step over of 8 mm, achieves the highest GRG value, signifying superior machining efficiency. Further analysis demonstrates that optimizing toolpath parameters significantly enhances process stability, reduces energy consumption, and shortens production cycle time, contributing to increased productivity in CNC machining operations. These findings provide valuable insights for the manufacturing industry, presenting a data-driven framework for selecting optimal toolpath strategies to improve machining precision, operational cost efficiency, and sustainable production practices.

Keywords:

CNC machining, toolpath optimization, Grey Relational Analysis, Grey Relational Coefficient, Grey Relational Grade, Mastercam, machining efficiency

Downloads

Download data is not yet available.

References

[1] Prasetiawan, J. (2022). Prediksi optimasi dimensi balok kolom bangunan masjid dengan metode Artificial Neural Network. J-ENSITEC (Journal of Engineering and Sustainable Technology), 8(2), 682-690.

[2] Chakraborty, S., Datta, H. N., & Chakraborty, S. (2023). Grey Relational Analysis-Based Optimization of Machining Processes: a Comprehensive Review. Process Integration and Optimization for Sustainability, 7(4), 609–639. doi:10.1007/s41660-023-00311-4

[3] Feng, C., Chen, X., Zhang, J., Huang, Y., & Qu, Z. (2021, September 3). Minimizing the Energy Consumption of Holes Machining Integrating the Optimization of Tool Path and Cutting Parameters on CNC Machines. doi:10.21203/rs.3.rs-859774/v1

[4] Koç, Ö. (2021). Evaluation of Tool Path Strategies in CNC Woodworking Machines and A Case Study. Wood Industry and Engineering, 3(2), 1–11. Retrieved from https://dergipark.org.tr/en/pub/wie

[5] Kumar, R., Sharma, S., Kumar, R., Verma, S., & Rafighi, M. (2023, March 1). Review of Lubrication and Cooling in Computer Numerical Control (CNC) Machine Tools: A Content and Visualization Analysis, Research Hotspots and Gaps. Sustainability (Switzerland) . Multidisciplinary Digital Publishing Institute (MDPI). doi:10.3390/su15064970

[6] Liao, J., & Huang, Z. (2024). Data model-based toolpath generation techniques for CNC milling machines. Frontiers in Mechanical Engineering, 10. doi:10.3389/fmech.2024.1358061

[7] Mani, V., & Krishnan N. (2024). THE ROLE OF CNC MACHINES IN MODERN INDUSTRIAL AUTOMATION Venkatesh Mani. International Journal of Advance Scientific Research. Retrieved from http://sciencebring.co

[8] Pajaziti, A., Tafilaj, O., Gjelaj, A., & Berisha, B. (2025). Optimization of Toolpath Planning and CNC Machine Performance in Time-Efficient Machining. Machines, 13(1), 65. doi:10.3390/machines13010065

[9] Pangestu, P., Pujiyanto, E., & Rosyidi, C. N. (2021). Multi-objective cutting parameter optimization model of multi-pass turning in CNC machines for sustainable manufacturing. Heliyon, 7(2). doi:10.1016/j.heliyon.2021.e06043

[10] Saputra, M. A. E., & Satoto, H. F. (2024). Upaya peningkatan produktivitas UMKM pembuatan kerupuk Bu Tutik menggunakan metode Objective Matrix (OMAX). J-ENSISTEC (Journal of Engineering and Sustainable Technology), 10(2), 1022-1029.

[11] Yao, K. C., Chen, D. C., Pan, C. H., & Lin, C. L. (2024). The Development Trends of Computer Numerical Control (CNC) Machine Tool Technology. Mathematics, 12(13). doi:10.3390/math12131923

Downloads

Abstract Views : 15
Downloads Count: 3

Published

2025-06-20

How to Cite

Sihmaulana Dwianto, Genarsih, T., & Syaifur Rohman, A. (2025). OPTIMASI STRATEGI TOOLPATH CNC DENGAN GREY RELATIONAL ANALYSIS UNTUK MENINGKATKAN EFISIENSI PEMESINAN. J-ENSITEC, 11(02), 10236–10243. https://doi.org/10.31949/j-ensitec.v11i02.13808

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.