Analisis Proses Dynamic Thinking dalam Menyelesaikan Soal Geometri Analitik Ruang
DOI:
https://doi.org/10.31949/dm.v3i2.1628Abstrak
Geometri dipelajari oleh siswa SD, SMP, dan SMA, tidak terkecuali juga mahasiswa calon guru matematika. Sejarah matematika mengungkapkan cara berpikir dinamis yang mendasari konsep-konsep penting dan perkembangannya. Interpretasi atas cara berpikir dinamis sejalan dengan proses konseptualisasi dalam pembelajaran matematika. Tujuan penelitian ini adalah untuk mendeskripsikan karakteristik proses berpikir dinamis calon guru matematika dalam menyelesaiakan soal geometri analitik ruang. Penelitian dilaksanakan di Universitas Tidar pada mahasiswa semester IV perkuliahan geometri analitik ruang Program Studi Pendidikan Matematika. Penelitian ini menggunakan metode kualitatif. deskriptif. Instrumen penelitian yang berupa tes yang diberikan sebanyak dua kali, lembar observasi, dan pedoman wawancara. Instrumen yang telah disusun divalidasi oleh pakar. Data yang diperoleh kemudian dianalisis melalui tahap reduksi data, penyajian data, dan penarikan kesimpulan. Hasil penelitian yang dilakukan menemukan bahwa karakteristik pemikiran dinamis yang lengkap dan konsisten dilakukan oleh calon guru matematika mahir pada kedua tes yang menunjukkan urutan memahami apa yang diketahui, memahami pertanyaan, mengetahui bagaimana memperoleh informasi rinci yang dibutuhkan, memilih cara yang efektif dan efisien untuk memecahkan, memikirkan cara lain untuk memecahkan masalah (modifikasi), memantau apakah jawaban atas masalah geometri, Bertanggung jawab atas solusi bekerja, memantau kembali langkah-langkah pada solusi, termotivasi dalam memecahkan masalah Geometri, bersedia untuk mengubah pandangan dan memperbaiki kesalahan, menyusun rencana untuk memecahkan masalah geometri, memberikan solusi yang jelas, mengambil pertimbangan cepat sebelum memecahkan masalah geometri, menemukan strategi yang akan digunakan untuk memecahkan masalah geometri, mengintegrasikan masalah Geometri dengan masalah sebelumnya, dan mengkonfigurasi ulang konsep sebelumnya untuk memecahkan masalah geometri.
Kata Kunci:
Dynamic thinking; Penyelesaian Soal; Geomteri Analitik RuangUnduhan
Referensi
Baker, A. (2004). Simplicity. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy, retrieved November 18, 2005, from http://plato.stanford.edu/archives/win2004/entries/simplicity
Charters, E. (2003). The Use of Think-Aloud Methods in Qualitative Research an Introduction to Think-Aloud Methods. Brock Education: A Journal of Educational Research and Practice, 12(2), 68–82. https://doi.org/10.26522/brocked.v12i2.38
Derbentseva, N, Safayeni, F, & Can, A. J. (2007). Concept Maps: Experiments on Dynamic Thinking. Journal of Research in Science Teaching. Vol. 44, No. 3, Pp. 448–465
Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic capabilities: What are they? Strategic Management Journal, 21(10/11), 1105–1121
Ildikó Pelczer, Florence Mihaela Singer, & Cristian Voica. (2014). Dynamic thinking and static thinking in problem solving: do they explain different patterns of students’ answers?. Procedia: Social and Behavioral Sciences, 128, 217-222
Imswatama, A. & Muhassanah, N. (2015). Analisis kesulitan mahasiswa dalam menyelesaikan soal geometri analitik bidang materi garis dan lingkaran. Prosiding Seminar Matematika dan Pendidikan Matematika UNY 2015. Universitas Negeri Yogyakarta-Yogyakarta, 41-48
Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016). Problem solving in mathematics education. Springer Nature.
Moreno-Armella, L., & Hegedus, S. (2013). From static to dynamic mathematics: Historical and representational perspectives. In The SimCalc vision and contributions (pp. 27-45). Springer, Dordrecht.
Pelczer, I., Singer, F. M., & Voica, C. (2014). Dynamic thinking and static thinking in problem solving: do they explain different patterns of students’ answers?. Procedia-Social and Behavioral Sciences, 128, 217-222.
Rellensmann, J., Schukajlow, S., & Leopold, C. (2019). Measuring and investigating strategic knowledge about drawing to solve geometry modelling problems. ZDM
Teece, D. J. (2007). Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance. Strategic Management Journal, 28, 1319–1350
Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18 (7), 509–533
Schreyogg, G., & Kliesch-Eberl, M. (2007). How dynamic can organizational capabilities be? Towards a dual-process model of capability dynamization. Strategic Management Journal, 28, 913–933
Sukestiyarno. (2020). Metode Penelitian Pendidikan. Semarang: Unnes Press
Susilo, B. E., Sutarto, H. & Mubarok, D. (2015). Pengembangan Perangkat Pembelajaran Geometri Ruang dengan Model Proving Theorem. Jurnal Matematika Kreatif-Inovatif, 6(2), 170-176
Zollo, M., & Winter, S. G. (2002). Deliberate learning and the evolution of dynamic capabilities. Organization Science, 13(3), 339–351