Pengaruh pemberian pupuk Fe terhadap pertumbuhan, produksi, dan kelayakan ekonomi tanaman tomat (Solanum lycopersicum)

Authors

  • Hafith Furqoni IPB University

DOI:

https://doi.org/10.31949/agrivet.v13i1.13554

Abstract

Plants require nutrients to carry out various essential physiological processes in their lives. Iron (Fe) is one of the important micronutrients that are essential for plant growth and reproduction. Although plants only need Fe in relatively small amounts, compounds containing Fe play a crucial role in various physiological processes. The purpose of this study was to determine the effectiveness of Fe fertilizer on yield and economic feasibility in tomato plants. The experiment was arranged in a randomized block design with 7 treatments and 4 replications. The treatments used were without inorganic fertilization (P0), comparison inorganic fertilization (P1), and 5 levels of inorganic Fe fertilization: 1.0, 1.5, 2.0, 2.5, and 3.0 l/ha of inorganic Fe fertilizer applied at 4, 6, 8, and 10 weeks after planting (WAP). The results of the experiment showed that the application of 1.25 doses of inorganic Fe fertilizer (2.5 l/ha/application) resulted in the highest plant growth and yield components and tomato yield compared to the control treatment. That treatment also showed the most effective dose agronomically and economically. The recommended dose for tomato plants is 2.5 l/ha/application applied 4 times, namely at 4, 6, 8, and 10 WAP by foliar spray.

Keywords:

hortikultura, Pupuk, Produktivitas

Downloads

Download data is not yet available.

References

Akbar, S. A. Q., Hifnalisa, H., & Muyassir, M. (2020). Teknologi Ameliorasi dan Pemupukan Tanah Suboptimal serta Hubungannya dengan Serapan Hara, Efisiensi Pemupukan dan Hasil Padi Galur Sikuneng. Jurnal Ilmiah Mahasiswa Pertanian, 5(2), 250-256.

Bashir, K., & Nishizawa, N. K. (2013). Iron proteins, plant iron transporters. Encyclopedia of metalloproteins, 1015-1023.

Bashir, K., Ishimaru, Y., & Nishizawa, N. K. (2011c). Identification and characterization of the major mitochondrial Fe transporter in rice. Plant Signaling & Behavior, 6(10), 1591-1593.

Bashir, K., Ishimaru, Y., Shimo, H., Kakei, Y., Senoura, T., Takahashi, R., ... & Nishizawa, N. K. (2011b). Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron. Soil Science and Plant Nutrition, 57(6), 803-812.

Bashir, K., Ishimaru, Y., Shimo, H., Nagasaka, S., Fujimoto, M., Takanashi, H., ... & Nishizawa, N. K. (2011a). The rice mitochondrial iron transporter is essential for plant growth. Nature communications, 2(1), 322.

Hanke, G. U. Y., & Mulo, P. (2013). Plant type ferredoxins and ferredoxin‐dependent metabolism. Plant, cell & environment, 36(6), 1071-1084.

Hu, Y., Burucs, Z., & Schmidhalter, U. (2008). Effect of foliar fertilization application on the growth and mineral nutrient content of maize seedlings under drought and salinity. Soil Science and Plant Nutrition, 54(1), 133-141.

Islam, M. S., Kasim, S., Amin, A. M., Alam, M. K., Khatun, M. F., Ahmed, S., ... & Hossain, A. (2023). Foliar application of enriched banana pseudostem sap influences the nutrient uptake, yield, and quality of sweet corn grown in an acidic soil. PloS one, 18(8), e0285954.

Marschner, H. (1995). Mineral nutrition of higher plants.

Michel, L., Beyá-Marshall, V., Rombolà, A. D., Pastenes, C., & Covarrubias, J. I. (2019). Evaluation of Fe-heme applications or intercropping for preventing iron deficiency in blueberry. Journal of Soil Science and Plant Nutrition, 19, 117-126.

Mori, S., Nishizawa, N., Hayashi, H., Chino, M., Yoshimura, E., & Ishihara, J. (1991). Why are young rice plants highly susceptible to iron deficiency?. In Iron Nutrition and Interactions in Plants: “Proceedings of the Fifth International Symposium on Iron Nutrition and Interactions in Plants”, 11–17 June 1989, Jerusalem, Israel, 1989 (pp. 175-188). Springer Netherlands.

Obi, C. D., Bhuiyan, T., Dailey, H. A., & Medlock, A. E. (2022). Ferrochelatase: mapping the intersection of iron and porphyrin metabolism in the mitochondria. Frontiers in Cell and Developmental Biology, 10, 894591.

Pooja, A. P., & Ameena, M. (2021). Nutrient and PGR based foliar feeding for yield maximization in pulses: A review. Agricultural Reviews, 42(1), 32-41.

Rodríguez-Celma, J., Pan, I. C., Li, W., Lan, P., Buckhout, T. J., & Schmidt, W. (2013). The transcriptional response of Arabidopsis leaves to Fe deficiency. Frontiers in Plant Science, 4, 276.

Sun, W. J., Zhang, J. C., Ji, X. L., Feng, Z. Q., Wang, X., Huang, W. J., ... & Hao, Y. J. (2021). Low nitrate alleviates iron deficiency by regulating iron homeostasis in apple. Plant, Cell & Environment, 44(6), 1869-1884.

Tognetti, V. B., Palatnik, J. F., Fillat, M. F., Melzer, M., Hajirezaei, M. R., Valle, E. M., & Carrillo, N. (2006). Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. The Plant Cell, 18(8), 2035-2050.

Van Hoewyk, D., Abdel-Ghany, S. E., Cohu, C. M., Herbert, S. K., Kugrens, P., Pilon, M., & Pilon-Smits, E. A. (2007). Chloroplast iron-sulfur cluster protein maturation requires the essential cysteine desulfurase CpNifS. Proceedings of the National Academy of Sciences, 104(13), 5686-5691.

Vigani, G., Zocchi, G., Bashir, K., Philippar, K., & Briat, J. F. (2013). Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends in Plant Science, 18(6), 305-311.

Downloads

Abstract Views : 0
Downloads Count: 0

Published

2025-06-14

How to Cite

Furqoni, H. (2025). Pengaruh pemberian pupuk Fe terhadap pertumbuhan, produksi, dan kelayakan ekonomi tanaman tomat (Solanum lycopersicum). Agrivet : Jurnal Ilmu-Ilmu Pertanian Dan Peternakan (Journal of Agricultural Sciences and Veteriner), 13(1), 130–139. https://doi.org/10.31949/agrivet.v13i1.13554

Issue

Section

Articles