Kelimpahan dan keanekaragaman makrofauna tanah sebagai perekayasa kesuburan tanah pada penggunaan lahan yang berbeda di Kota Kendari

Authors

  • Darwis Suleman Universitas Halu Oleo
  • Syamsu Alam
  • La Ode Rustam

DOI:

https://doi.org/10.31949/agrivet.v13i1.13222

Abstract

Land use patterns are prominent factors affecting the abundance and diversity of soil macrofauna and in turn affect structure and soil function. This study was carried out on farmers' land from October to December 2022. The study aims to evaluate the abundance, diversity and dominance as well as the richness of soil macrofauna on coconut and rambutan area and reeds field. Sampling for soil macrofauna used the monolith method and separation of macrofauna using hand sorting techniques. Monolith plots measuring of 20 x 20 cm with a depth of 20 cm were placed randomly for each land use with 3 replications. Data analysis was carried out on abundance, diversity and dominance of macrofauna as well as the taxon richness. Analysis of variance was also applied on the abundance and diversity of macrofauna. The results highlighted that the abundance and diversity of soil macrofauna was the highest in the reeds land in which the soil never been disturbed, followed by coconut and rambutan plantations. On the other hand, termite was dominance in coconut plantations by 82.30%, while earthworm was dominance in rambutan plantations by 64.36%. The current study concluded that the existence of soil macrofauna is a paramount important to be maintained as the main soil fertility engineer in agricultural land.

Keywords:

Earthworm, Land degradation, Organic matter, Termite

Downloads

Download data is not yet available.

References

Abe, S. S. & Wakatsuki, T. (2010). Possible influence of termites (Macrotermes bellicosus) on forms and composition of free sesquioxides in tropical soils, Pedobiologia 53 (5): 301-306 https://doi.org/10.1016/j.pedobi.2010.02.002

Ayuke, F.O., Pulleman, M. M., Vanlauwe, B., de Goede, R. G., Six, J., Csuzdi, C. & Brussaard, L. (2011). Agricultural management affects earthworm and termite diversity across humid to semi-arid tropical zones. Agriculture, ecosystems & environment, 140(1- 2): 148-154. https://doi.org/10.1016/j.agee.2010.11.021

Araujo, Y., Luizão, F. J., & Barros, E. (2004). Effect of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mesocosms. Biology and Fertility of Soils, 39(3): 146- 152. DOI:10.1007/s00374-003-0696-0.

Ashton, L.A., Griffiths, H.M., Parr, C.L., Evans, T.A., Didham, R.K., Hasan, F., The, Y.A., Tin, H.S., Vairappan, C.S. and Eggleton, P. (2019). Termites mitigate the effects of drought in tropical rainforest. Science, 363(6423):174-177. http://dx.doi.org/10.1126/science.aau9565

Aupic-Samain, A., Baldy, V., Delcourt, N., Krogh, P.H., Gauquelin, T., Catherine Fernandez, C. & Santonja, M. (2021). Water availability rather than temperature control soil fauna community structure and prey–predator interactions. Funct. Ecol., 35 (7) (2021), pp. 1550-1559. http://dx.doi.org/10.1111/1365-2435.13745

Bedanoa, J.C., Domíngueza, A., Arolfoa, R. & Wall, L.G. (2016). Wall Effect of Good Agricultural Practices under no-till on litter and soil invertebrates in areas with different soil types. Soil & Tillage Research. 158, 100-109. http://dx.doi.org/10.1016/j.still.2015.12.005

Bernard, L., Chapuis-Lardy, L., Razafimbelo, T., Razafindrakoto, A. L., Legname E., Poulain, J., Brüls, T., Donohue, M. O., Brauman, A., Chotte, J. L. & Blanchart, E. (2012). Endogeic earthworms shape bacterial functional communities and affect organik matter mineralization in a tropical soil. Isme Journal. 6(1): 213–222. https://doi.org/10.1038%2Fismej.2011.87

Bezerra-Gusmão, MA., Barbosa J.R.C., Barbosa, M.R. de V, Bandeira, A.G. & Sampaio EVSB (2011) Are nests of Constrictotermes cyphergaster (Isoptera, Termitidae) important in the C cycle in the driest area of semiarid caatinga in northeast Brazil? Appl Soil Ecol 47: 1–5. http://dx.doi.org/10.1016/j.apsoil.2010.11.003

Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussard, L., Butt, K. R., Dai, J., Dendooven, L., Peres, G., Tondoh, J.E., Cluzeau, D. & Brun, J.J. (2013). A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science. 64:161–182. http://dx.doi.org/10.1111/ejss/12025

Bonachela, J.A., Pringle, R.M., Sheffer, E., Coverdale, T., Guyton, J.A., Caylor, K.K., Levin, S.A. & Tarnita, C. E. (2015). Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science, 347(6222): 651-655. https://doi.org/10.1126/science.1261487

Bishop, T. R., Robertson, M. P., van Rensburg, B. J., & Parr, C. L. (2014). Elevation–diversity patterns through space and time: Ant communities of the Maloti-Drakensberg Mountains of southern Africa. Journal of Biogeography, 41(12), 2256-2268. https://doi.org/10.1111/jbi.12368

Briones, M. J. I., Ostle, N.J., Mcnamara, N. & Poskitt. J. (2009). Functional shifts of grassland soil communities in response to soil warming. Soil Biology and Biochemistry. 41 (2):315–322. http://dx.doi.org/10.1016/j.soilbio.2008.11.003

Chen, C., Singh, A. K., Yang, B., Wang, H. & Liu, W. (2023). Effect of termite mounds on soil microbial communities and microbial processes: Implications for soil carbon and nitrogen cycling. Geoderma. 431. 116368. https://doi.org/10.1016/ j.geoderma. 2023. 116368

Chen, C., Liu, W., Wu, J. & Jiang, X. (2018). Spatio-temporal variations of carbon and nitrogen in biogenic structures of two fungus-growing termites (M. annandalei and O. yunnanensis) in the Xishuangbanna region. Soil Biol. Biochem., 117, 125-134. https://doi.org/10.1016/J.SOILBIO.2017.11.018

Chen, Q.L., Hu, H.W., Yan, Z.Z., Li, C.Y., Nguyen, B.A.T., Sun, A.Q., Zhu, Y.G. & He, J.Z. (2021). Deterministic selection dominates microbial community assembly in termite mounds. Soil Biol. Biochem., 152, Article 108073. http://dx.doi.org/10.21203/rs.3.rs-34782/v1

Chen, Q.L., Hu, H.W., Yan, Z.Z., Li, C.Y., Nguyen, B.A.T., Zheng, Y., Zhu, Y.G. & He, J.Z. (2021). Termite mounds reduce soil microbial diversity by filtering rare microbial taxa. Environ. Microbiol., 23(5):2659-2668. https://doi.org/10.1111/1462-2920.15507

Chen, C., Zou, X., Wu, J., Zhu, X., Jiang, X., Zhang, W., Zeng, H.H. & Liu, W. (2021). Accumulation and spatial homogeneity of nutrients within termite (Odontotermes yunnanensis) mounds in the Xishuangbanna region. SW China. Catena, 198 (1), Article 105057. http://dx.doi.org/10.1016/j.catena.2020.105057

Chen, X., Liang, A., Wu, D., McLaughlin, N.B., Jia, S., Zhang, S., Zhang, Y. & Huang, D. 2021. Tillage-induced effects on organic carbon in earthworm casts through changes in their physical and structural stability parameters. Ecological Indicators. 125. 107521 https://doi.org/10.1016/j.ecolind.2021.107521

Crittenden, S.J., Eswaramurthy, T., De Goede, R.G., Brussaard, L. & Pulleman, M.M. (2014). Effect of tillage on earthworms over short-and medium-term in conventional and organik farming. Appl Soil Ecol.83:140–148. https://doi.org/10.1016/j.apsoil.2014.03.001.

Donovan, S.E., Eggleton, P., Dubbin, W. E. Batchelder, M. & Dibog, L. (2001). The effect of a soil-feeding termite, Cubitermes fungifaber (Isoptera: Termitidae) on soil properties: termites may be an important source of soil microhabitat heterogeneity in tropical forests. Pedobiologia, 45 (1):1-11. https://doi.org/10.1078/0031-4056-00063

Eisenhauer, N. (2010). The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia. 53(6):343–352. https://doi.org/10.1016/j.pedobi.2010.04.003

Eisenhauer, N., Hörsch, V., Moeser, J. & Scheu, S. (2010). Synergistic effects of microbial and animal decomposers on plant and herbivore performance. Basic Appl. Ecol. 11(1):23–34. http://dx.doi.org/10.1016/j.baae.2009.11.001

Eggleton, P., Bignell, D. E., Hauser, S., Dibog, L., Norgrove, L., & Madong, B. (2002). Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agriculture, Ecosystems & Environment. 90(2): 189-202. https://doi.org/10.1016/S0167-8809(01)00206-7

Franklin, F., Magnusson, W.E. & Luiza, F.J. (2005). Relatif effects of biotic and abiotic factors on the composition of soil invertebrate communities in an Amazonian savanna. Applied Soil Ecology 29: 259–273. doi:10.1016/j.apsoil.2004.12.004

Frazão J, de Goede RG, Brussaard L, Faber JH, Groot JC. & Pulleman MM. (2017). Earthworm communities in arable fields and restored field margins, as related to management practices and surrounding landscape diversity. Agric Ecosyst Environ. 248:1–8. https://doi.org/10.1016/j.agee.2017.07.014.

Gibb, H., Sanders, N. J., Dunn, R. R., Watson, S., Photakis, M., Abril, S., Andersen, A. N., Angulo, E., Armbrecht, I., Arnan, X., Baccaro, F. B., Bishop, T. R., Boulay, R., Castracani, C., Del Toro, I., Delsinne, T., Diaz, M., Donoso, D. A., Enríquez, M. L. & Parr, C. L. (2015). Climate mediates the effects of disturbance on ant assemblage structure. Proceedings of the Royal Society of London B: Biological Sciences, 282(1808); 1-9. https://doi.org/10.1098/rspb.2015.0418

Heděnec, P., Jiménez, J.J., Moradi, J., Domene, X., Hackenberger, D., Barot, S., Frossard, A., Oktaba, L., Filser, J., Kindlmann, P. & Frouz, J. (2022). Global distribution of soil fauna functional groups and their estimated litter consumption across biomes. Sci. Rep. 12: 17362. doi: 10.1038/s41598-022-21563-z

Handayani, W. & Winara, A. (2020). Keanekaragaman makrofauna tanah pada beberapa penggunaan lahan gambut. Jurnal Agroforestri Indonesia. 3(2): 77-88. doi.org/10.20886/JAI.2020.3.2.77-88

Jenkins, C. N., Sanders, N. J., Andersen, A. N., Arnan, X., Brühl, C. A., Cerda, X., Ellison, A. M., Fisher, B. L., Fitzpatrick, M. C., Gotelli, N. J., Gove, A. D., Guénard, B., Lattke, J. E., Lessard, J.-P., McGlynn, T. P., Menke, S. B., Parr, C. L., Philpott, S. M., Vasconcelos, H. L. & Dunn, R. R. (2011). Global diversity in light of climate change: the case of ants. Diversity and Distributions, 17(4); 652–662. https://doi.org/10.1111/j.1472-4642.2011.00770.x

Joseph, G. S., Muluvhahothe, M. M., Seymour, C. L., Munyai, T. C., Bishop, T. R., & Foord, S. H. (2019). Stability of Afromontane ant diversity decreases across an elevation gradient. Global Ecology and Conservation, 17, e00596. https://doi.org/10.1016/j.gecco.2019.e00596.

Jouquet, P., Jamoteau, F., Majumdar, S., Podwojewski, P., Nagabovanalli, P., Caner, L., Barboni, D. & Meunier, J.D. (2020). The distribution of Silicon in soil is influenced by termite bioturbation in South Indian forest soils. Geoderma, 372(3–4). DOI:10.1016/j.geoderma.2020.114362.

Levick, S.R., Asner, G.P., Chadwick, O.A., Khomo, L.M., Rogers, K.H., Hartshorn, A.S., Kennedy-Bowdoin, T. & Knapp, D.E. (2010). Regional insight into savanna hydrogeomorphology from termite mounds. Nat. Commun. 1(6):65. DOI:10.1038/ncomms1066.

Lerner, A.M., Zuluaga, A.F., Chara, J., Etter, A. & Searchinger, T. (2017). Sustainable Cattle Ranching in Practice: Moving from Theory to Planning in Colombia's Livestock Sector. Environ Manage. 60(2):176-184. doi: 10.1007/s00267-017-0902-8

Liu, W., Qiao, C., Yang, S., Bai, W. & Liu, L. (2018). Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organik matter decomposition. Geoderma, 332, 37-44. https://doi.org/10.1016/j.geoderma.2018.07.008

Malik, A. A., Chowdhury, S., Schlager, V., Oliver, A., Puissant, J., Vazquez, P. G., Jehmlich, N., von Bergen, M., Griffiths, R.I. & Gleixner, G. (2016). Soil fungal: bacterial ratios are linked to altered carbon cycling. Front. Microbiol. 7, 1247. https://doi.org/10.3389/fmicb.2016.01247

Myer, A. & Froschler, B.T. (2019). Evidence for the Role of Subterranean Termites (Reticulitermes spp.) in Temperate Forest Soil Nutrient Cycling. Ecosystem. 22, 602–618. https://link.springer.com/article/10.1007/s10021-018-0291-8

Mcinga, S., Manyevere, A. & Mnkeni, P. (2020): Earthworm diversity and density as affected by soil and climatic faktors in Raymond Mhlaba municipality, Eastern Cape province, South Africa, South African Journal of Plant and Soil, 2020; 1-8. DOI: 10.1080/02571862.2020.1822453

Nelson, D.W. & Sommers, L.E. 1982. Total carbon, organic carbon and organic matter. p. 539-579. In: A.L. Page (Ed) Methods of soil analysis. 2ndEds. ASA Monograph. 9 (2). American Society of Agronomy. Madison. WI

Pelosi C, Barot S, Capowiez Y, Hedde M, Vandenbulcke F. (2014). Pesticides and earthworms. A review. Agron Sustain Dev. ;34(1):199–228. https://doi.org/10.1007/s13593-013-0151-z.

Pelosi, C., Pey, B., Hedde, M., Caro, G., Capowiez, Y., Guernion, M., Peigné, J., Piron, D., Bertrand, M. & Cluzeau, D. (2014). Reducing tillage in cultivated fields increases earthworm functional diversity. Appl Soil Ecol. 83:79–86. https://doi.org/10.1016/j.apsoil.2013.10.005.

Phillips, H.R.P., Guerra, C.A., Bartz, M.L.C. & Briones, M.J.I. (2019). Global distribution of earthworm diversity. Science. 366 (6464): 480-485 doi: 10.1126/science.aax4851.

Sanders, N. J., Lessard, J.-P., Fitzpatrick, M. C., & Dunn, R. R. (2007). Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecology and Biogeography, 16(5), 640–649. https://doi.org/10.1111/j.1466-8238.2007.00316.x

Singh, A., & Sharma, S. (2003). Effect of microbial inocula on mixed solid waste composting, vermicomposting and plant response. Compost Science & Utilization, 11(3), 190-199.

Smith, S.E. & Read, D.J. (2008). Mycorrhizal Symbiosis. 3rd ed. Academic Press. San Diego, USA.

Singh, J., Schädler, M., Demetrio, W., Brown, G.G. and Eisenhauer, N. (2019). Climate change effects on earthworms - a review. Soil Org. Soil Org. 91(3): 114–138. doi: 10.25674/so91iss3pp114

Schmidt O, Clements RO & Donaldson G. (2003). Why do cereal–legume intercrops support large earthworm populations? Appl Soil Ecol. 22(2):181–90. https://doi.org/10.1016/S0929-1393(02)00131-2

Sharpley, A., McDowell, R., Moyer, B. & Littlejohn, R. (2011). Land application of manure can influence earthworm activity and soil phosphorus distribution. Commun Soil Sci Plant Anal. 42(2):194–207. https://doi.org/10.1080/00103624.2011.535070.

Singh, S., Sharma, A., Khajuria, K., Singh, J. & Pal Vig, A. (2020). Soil properties changes earthworm diversity indices in different agro-ecosystem. BMC Ecology . 20 (1). https://bmcecol.biomedcentral.com/articles/10.1186/s12898-020-00296-5

Tian, Q., Zhang, X., Yi, H., Li, Y., Xu, X., He, J. & He, L. (2023). Plant diversity drives soil carbon sequestration: evidence from 150 years of vegetation restoration in the temperate zone. Front. Plant Sci., 14. https://doi.org/10.3389/fpls.2023.1191704

Velasquez, E., & Lavelle, P. (2019). Soil macrofauna as an indicator for evaluating soil based ecosystem services in agricultural landscapes. Acta Oecologica, 100, 1–18. https://doi.org/10.1016/j.actao.2019.103446

Winara, A. (2020). Keragaman makrofauna tanah pada agroforestry Jati (Tectona grandis) dan Kimpul (Xanthosoma sangittifolium). Jurnal Agroforestri Indonesia. 3 (1): 9 – 18. https://doi.org/10.20886/jai.2020.3.1.9-18

Wever, L.A., Lysyk, T.J. & Clapperton, M.J. (2001). The influence of soil moisture and temperature on the survival, aestivation, growth and development of juvenile Aporrectodea tuberculata (Eisen) (Lumbricidae). Pedobiologia. 45(2):121–133. DOI:10.1078/0031-4056-00074

Widiastuti, H. (2004). Biologi interaksi cendawan mikoriza arbuskula kelapa sawit pada tanah asam sebagai dasar pengembangan teknologi aplikasi dini. Institut Pertanian Bogor, Bogor.

Woon, J.S., Atkinson, D., Adu-Bredu, S., Eggleton, P. & Catherine L. Parr, C.L. (2022). Termites have wider thermal limits to cope with environmental conditions in savannas. https://doi.org/10.1111/1365-2656.13673

Downloads

Abstract Views : 0
Downloads Count: 0

Published

2025-06-14

How to Cite

Suleman, D., Alam, S., & Rustam, L. O. (2025). Kelimpahan dan keanekaragaman makrofauna tanah sebagai perekayasa kesuburan tanah pada penggunaan lahan yang berbeda di Kota Kendari . Agrivet : Jurnal Ilmu-Ilmu Pertanian Dan Peternakan (Journal of Agricultural Sciences and Veteriner), 13(1), 42–53. https://doi.org/10.31949/agrivet.v13i1.13222

Issue

Section

Articles