CNN-BASED ARTIFICIAL INTELLIGENCE (AI) IMPLEMENTATION TO IDENTIFY BASMATI RICE IN SUBANG DISTRICT
DOI:
https://doi.org/10.31949/jmm.v3i1.6371Abstract
The existence of Basmati rice among the upper middle class in Indonesia is increasingly popular. Unfortunately, this rice is only grown in northern India and Pakistan. Fulfillment of rice must be imported and the price in Indonesia is relatively expensive. Responding to this phenomenon, the Center for Rice Research (BB Padi), the Agricultural Research and Development Agency succeeded in assembling a special rice variety Basmati. And given the name Baroma, an abbreviation of type Basmati Aromatic rice. And Baroma rice was launched in Subang in 2019 until now it has been recorded that several agricultural lands in Subang have planted this type. The more types of rice varieties, the more types of rice will be found. So that it will make consumers difficult to distinguish between types of rice with one another. Therefore, we need a solution to overcome this problem. And one solution that can be used is to use AI technology, as in the research we did. Using the CNN algorithm produces very good accuracy for detecting types of rice such as the type of data used for training data and test data. From the results of the model training carried out, it produces an accuracy rate of 98,52% while model testing to see how well the model predicts the label correctly is 97,80%.
Keywords:
CNN, Basmati Rice, Rice Type DetectionDownloads
References
Abdullah, F., et al. et al. 2022. Analisis ketersediaan beras di kabupaten Gorontalo selang tahun 2021-2030. Agrinesia. Vol. 6, No. 3, 187-197.
Adnan, et al. 2013. Identifikasi jenis dan mutu beras (Oryza sativa) berdasarkan analisis warna dan bentuk menggunakan teknologi pengolahan citra dan jaringan saraf tiruan (JST). Penelitian pertanian tanaman pangan, Vol. 32, No. 2, 91-97.
Afifah, N., Zakiyah, N. 2020. Review artikel:indeks glikemik pada berbagai varietas beras. Farmaka, Vol. 18, No. 2, 42-49, DOI: https://doi.org/10.24198/farmaka.v18i2.27781.
Çınar, İ. & Koklu, M. 2022. Identification of Rice Varieties Using Machine Learning Algorithms . Journal of Agricultural Sciences , 28 (2) , 307-325 . DOI: 10.15832/ankutbd.862482.
Cogan T, Cogan M, Tamil L. MAPGI: Accurate identification of anatomical landmarks and diseased tissue in gastrointestinal tract using deep learning. Comput Biol Med. 2019 Aug;111:103351. doi: 10.1016/j.compbiomed.2019.103351. Epub 2019 Jul 10. PMID: 31325742.
C. Zhang, I. Sargent, X. Pan, A. Gardiner, J. Hare and P. M. Atkinson, "VPRS-Based Regional Decision Fusion of CNN and MRF Classifications for Very Fine Resolution Remotely Sensed Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 8, pp. 4507-4521, Aug. 2018, doi: 10.1109/TGRS.2018.2822783.
Endang, S. & Wibowo, A. 2023. Klasifikasi dan deteksi keretakan pada trotoar menggunakan metode convolutional neural network. JTSC, Vol. 4, No. 1, 412-427, DOI: https://doi.org/10.51988/jtsc.v4i1.116.
Hanas, D.F., et al. 2017. Karakter morfologi beras sebagai pembeda varietas padi. Indonesian journal of legal and forensic sciences, Vol. 7, 23-28, DOI: https://doi.org/10.24843/IJLFS.2017.v07.i01.p04.
Khamid, M.B.R., et al. 2019. Respon pertumbuhan dan hasil padi (Oryza Sativa L.) terhadap cekaman suhu tinggi. Indonesian Journal of Agronomy, Vol. 47, No. 2, 119-125. DOI: https://doi.org/10.24831/jai.v47i2.23854.
Statistik SNI 2023. Badan Standar Nasional. 17 Juni 2023. 28 Juli 2023. < https://bsn.go.id/main/bsn/isi_bsn/20423/statistik-sni-2023>
Wibowo, A. & Putra, M. 2021. Pemanfaatan kamera DSLR Canon 1200D untuk pengamatan fotometri bintang variabel. Seminar Panorama Antariksa 2021, 978, 78-81, 2022.
Wibowo, A. & Lusiana. 2022. Budidaya Tanaman Aren Sebagai Langkah Strategis Mewujudkan Hutan Lestari Di Subang. Sadeli: Jurnal Pengabdian kepada Masyarakat, Vol. 2, No. 216-24, 2022.
Yulianto, Y. & Wibowo, A. 2023. Deteksi keretakan perkerasan jalan aspal menggunakan metode convolutional neural network. JTSC, Vol. 4, No. 2, 581-593, DOI: https://doi.org/10.51988/jtsc.v4i2.