DOI:

Commissioning And FAT HVAC For Offshore On The KLA Flow Station

e-ISSN: 2829-4424

Yusup Firdaus¹, Engkos Koswara²

¹ Mechanical Engineering Universitas Majalengka ¹yusuffirdaus707@yahoo.com

Abstract

HVAC stands for Heating Ventilation Air Conditioning, in the industrial world it is very necessary to condition a room according to its needs, it can be used to regulate a room or freeze a product, the selection of HVAC materials for Offshore is very important so that the unit lasts a long time and does not rust easily.

The importance of selecting materials that are in accordance with the provisions in terms of safety, function and quality, materials that are easy to obtain, sizes according to calculations, aesthetics, and materials that are not easy to rust.

commissioning is done because to determine the quality and function of the HVAC unit whether it is in accordance with the design, function or calculation.

Keywords: HVAC, Commisioning, Offshore

Submitted: 2022-08-01 Revised: 2022-08-01 Accepted: 2022-10-01

Introduction

HVAC basically functions to maintain the condition of the surrounding air to protect equipment, and personal comfort by regulating ventilation and air conditioning. HVAC stands for Heating, Ventilation, and Air Conditioning. Which air conditioning system is an application of several branches of Mechanical Engineering, namely thermodynamics, fluid mechanics, and heat transfer.

HVAC is vital for its use in several industries, especially in buildings, offices filled with computer equipment that need to be kept moist, as well as large industries that require a good ventilation system.

The functions of the main components are as follows:

- Compressor, functions as a pressurizer for fluid flow in the HVAC system
- The condenser functions as a heat exchanger because it is convectional assisted by the surrounding air and a fan that blows it out, so that by exchanging heat the fluid can change, which was originally gas to become a mixture of liquid and vapor
- Expansion, functions as a regulator of the fluid flow rate because the pipe model shrinks so that the temperature and pressure drop, in this case the fluid can change which initially is a mixture that can become dominant steam
- Evaporator, functions as a heat exchanger but also receives heat from the surrounding air to change the fulla phase into perfect steam.

Offshore is a building designed for the middle of the sea as accommodation needs and special rooms, this building requires a cooling system called HVAC.

FAT stands for Factory Acceptance Test, meaning unit testing at the place that sells the unit, the goal is to ensure the unit to be purchased is in good condition, functioning properly, all controls can work properly, testing and measuring according to the SOP the results are also well, make sure the ESD system is functioning properly, the safety device can function properly, this is one of the reasons why FAT is done.

Commissioning, namely ensuring the reliability of the HVAC unit can run normally, the measurements are according to the design, and there are no problematic parameters, both in terms of the main components and supporting components.

Research Method

FAT must be prepared as a condition for fulfilling the tender obligations that have been planned, in this case several that must be prepared include material documents, installation documents, P&ID documents and their layouts, electrical installation wiring diagram documents, instruments, and processes, documents standard operating procedures for running the unit, component certificate or calibration documents, unit specification documents, wiring diagram control documents, FAT list Inspection material documents, Bill of Material documents, HVAC system parameter measurement or taking documents, punch list/defect finding documents, repair document from the punch list, then the minutes.

All of this must be done on the FAT agenda, usually starting from checking the documents first, checking the bill of materials in the field whether they are in accordance with what has been recorded in the document, checking the electrical wiring diagrams as well as the instruments and components that have been installed, checking all name tags and matching them. according to what has been designed, if everything is in accordance with the documents then carry out commissioning starting from measuring the power supply, testing the unit without loading first, testing all controls, such as testing the delta temperature or delta pressure, making sure it is in accordance with the controls, testing the process of opening the damper lid, and testing the damper when there are dangerous conditions, for example there is a gas leak that will enter the room, then the Gas detector sensor will function, so the shut off damper will work immediately to close and the system will shutdown, then if all the controls can function properly, then the HVAC system is run in pseudonormal only, after that do the measurements starting from taking the amperage data, the pressure from the high and low pressure gauge or the suction and discharge, whether it is in accordance with the specifications of the unit or not, the percent opening of the damper must be considered, as well as the starting temperature from the compressor suction and discharge, evaporator coil temperature, condenser coil temperature, water supply temperature, and the temperature difference from the surrounding air, then measure the vibration of the compressor motor, condenser motor, blower motor (AHU), pressurize fan motor, pay attention also the temperature of the drive end and nondrive end too.

Results and Discussion

		GI	ENERAL	
1	Location	KLA F/S	Manufacture/Brand	Safesphere
2	Area Classification	Hazardous Area Zone 2	Mode Operation	Redundant (1 Running, 1 Stand by)
3	Equipment Name	Air Cooled Condensor Unit (ACCU)	HVAC Type	Split Unit
		GENERAL E	QUIPMENT DATA	
4	Unit Dimension (LaWaH mm)	2.000 x 1.200 x 2.500	Unit Weight (kg)	1.300 Kg
5	Unit Model Number	ECU400A3SH/EEX	Total Cooling Lead (kWR)	117
6	Electric Supply (V/PtvHz)	480/3/60	Refrigerant	R-417 A
7	Total Power (kW)	117	System Installation	Knock Down System
	S/N	1019ECU616	Reft. Charge	20,5 kg
	SH	1019ECU617	CU617 Cooling (truth)	
9	Compressor	Semi Hermetic Recriprocating		
			ONDENSER	
10	Number of Rows	3	Fins Material	Copper
11	Type	Air Cooled	Fin Thickness (mm)	0.15
12	Quantity	2 Coll for each ACCU	Minimum Fin Spacing (mm)	1.5
13	Tube Material	Copper	Overall Dimension (HxLxVV)	(1.200 x 1.600 x 135)
14	Header Material	Copper	Condensing Temperature (°C)	50
15	Tube Diameter (noh)	38	Air Inlet Temperature (*C)	35
18	Tube Thickness (mm)	0.40	No. of fins per inch	12
17	Frame & Casing Material	Copper	Coil & Fin Corresion Protection	Black Electro Tin Coating
18	Weight (Kg)	87	Total Cooling Load (kW)	80.80 x 2 pcs
		REFRIGERATION CIRC	UIT & COMPRESSOR DATA	
19	Rated Power (kW)	29.8	Manufacture/Brand	Carlyle
20	Compressor Type	Reciprocating	Liquid Line Solenoid Valve	Available
21	Service Type	Semi Hermetic	Compressor isolating Valve	Available
22	No. Of Compressor	1 ea / CDU		
		REFRIGERATION CIRC	UIT & COMPRESSOR DATA	
23	Saturated Suction Temperature (*C)	7.25	Expansion Valve	Available
24	Saturated Discharge Temperature (*C)	53.4	High Pressure Gauge	Available
25	Net Refrigerant Cepacity	20,5 kg	Low Pressure Gauge	Available
26	Compressor Motor Rating (kW)	29.8	Loading / Unloading method	Available
27	High-Low Pressure Control	Avellable	Compressor Cooling	NA
28	Sight Glass	Available	Oil Type	POE 46
29	Compressor Speed	1,750	Ol Charge	9 b
30	(rpm) Drive Type	Reciprocating	Crankcase Heater with	Available
31	Sight glass	Available	terminal Box Weight (kg)	320
32	Oil Flow Controller	Available	Temperature Sensor for	NA NA
33	Compressor Capacity	Available (2 stage)	Motor Power	480 V – 3Ph – 60 Hz
	Control		romm	

Figure 1. ACCU HVAC system data sheet

5. PRESSURIZING FAN UNIT (PFU)

		GENER	RAL		
1	location	KLA F/S	Manufacture/Brand	Safesphere	
2	Area Classification	Hazardous Area Zone 2	Mode Operation	Redundant (1 Running,1 Stand by)	
3	Equipment Name	Pressurizing fan			
		GENERAL EQUIP	PMENT DATA		
4	Fan Type	Forward Curved	Fan Motor	Hazardous Area (Ex d IIB/IIC T4 Gb)	
5	Supply Power (V/Ph/Hz)	480/3/80	Motor Rating	480/3/60	
6	System Installation	Knock Down System	Power Motor	1.1 KW	
7	Unit model	EPFU3000/EEX	Total Static Pressure (Pa)	250	
8	Unit Dimension (LxWxH mm)	1.200 x 950 x 1.050	Unit Weight (kg)	400	
9	Location Installation	Outdoor	Air Volume (cfm)	4.000	
10	SIN	1019EPFU618	Rated Current (Amp)	2,69	
		1019EPFU619	Type Fan	Centrifugal Fan	
		SUPPLY FA	N DATA		
11	Motor Enclosure Type	TEFC (Totally Enclosed Fan Cooled)	Motor Insulation Class	Class F (IP55)	
12	Fan Blade Type	Forward Curved	Temperature Rise	Class B	
13	Driver Type	Belt Drive	Fan Speed (rpm)	800	
14	Manufacture	Nicotra	Total Static Pressure (Pa)	250	
15	Total Supply (L/s)	1651	Anti Vibration Mounting Type	Spring Mounting	
16	Fan Model/Serial	ADH 315 K	Belt Type	V- Belt	
17	Fen Motor manufacture	ABB Motor	Belt Model	SPB	
18	Motor Model / Serial	3GJA092101-ASC	Belt Manufacture	Optibelt	
19	Motor Classification	Hazardous Area (Ex d IIB/IIC T4 Gb)	Bearing Type	6205DDU/C3 - 6205DDU/C3	

Figure 2. HVAC system data sheet PFU

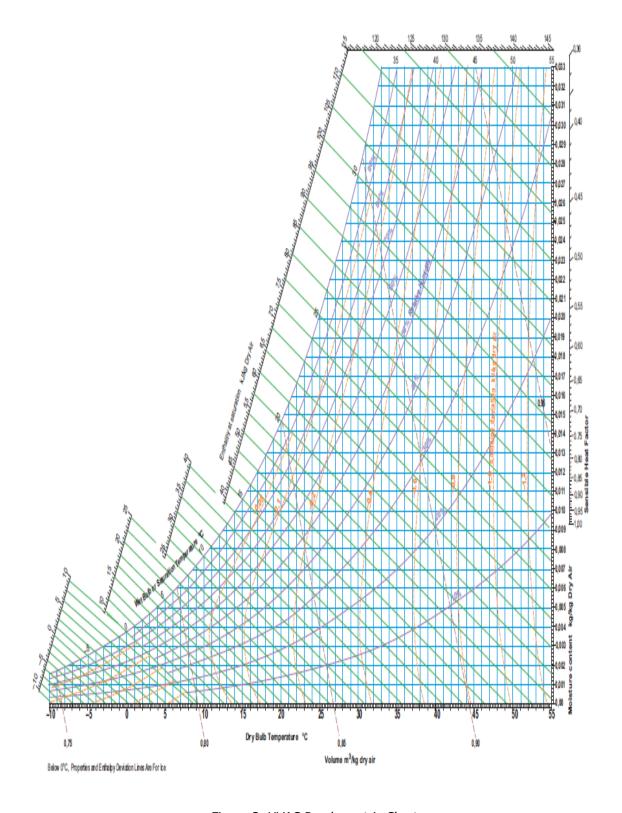


Figure 3. HVAC Psychometric Chart

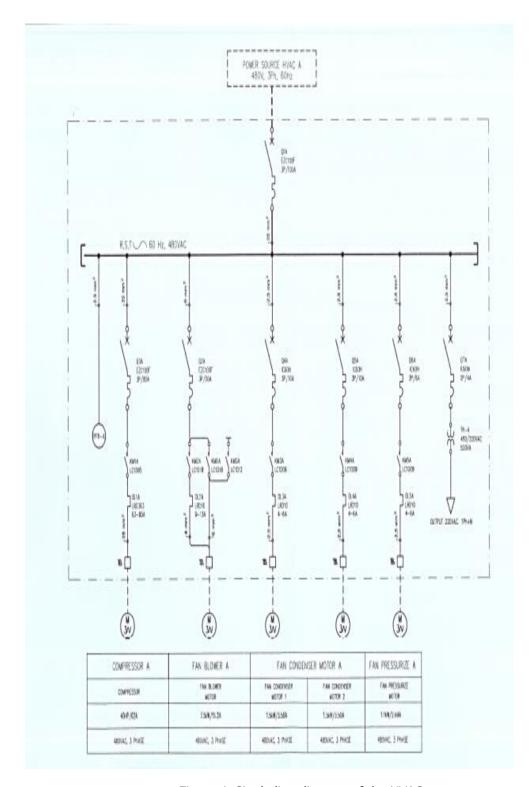


Figure 4. Single line diagram of the HVAC system

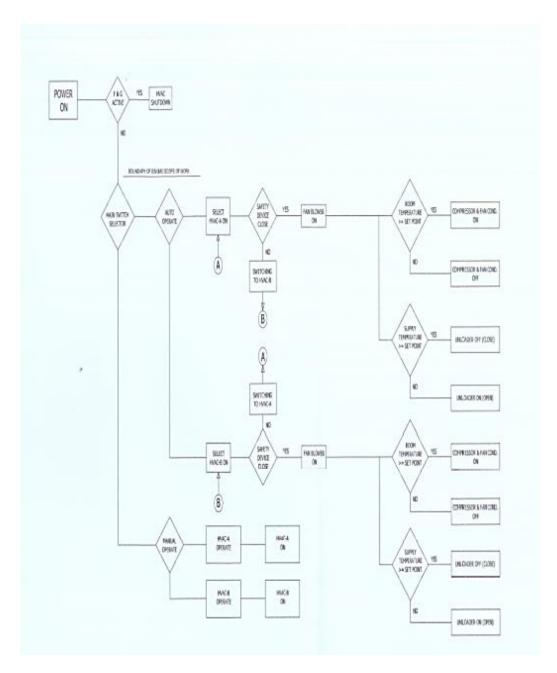


Figure 5. HVAC System Flow Chart

REFRIGERANT SIDE LOAD CALCULATION

	Inlet Compressor	Outlet Compressor	Outlet condensor	Inlet TXV	Inlet TXV	Outlet Evaporator	Air exits the Evaporator	Air exits the condenser
	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
٥C	15,72	80,47	53,35	52,36	8,94	19,10	21,33	47,88
٥F	60,29	176,85	128,02	126,25	48,09	66,38	70,39	118,18

Point ENTHALPHI FROM PH CHART

A = 56 (In Evaporator / Out TXV)

B = 56 (In TXV / Out Cond) C = 103 (In Compressor)

D = 117 (Out Compressor)

PRESSURE DATA

HP	295	Psig	309,7	Psia
LP	56	Psig	70,7	Psia
OIL	85	Psig	99,7	Psia

Actual Compressor Diplasement 82,5 cfm Note: Mass Flow Rate 144,7368421 lb/min 1.82,5 CFM pada 50 Hz Absolute Discharge Pressure 309,7 Psia 2.66 CFM pada 60 Hz Absolute Suction Pressure 70,7 Psia Spesific entering volume compressor 0,57 Ft³/lb Compressor volumetric Effisiency 75 %

FROM MOLLER CHART R-417 A:

1. Refrigernt Effect

RE = C - A

= 47 Btu / lb

2. Heat Off Compressor

HC = D - C

= 14 Btu/lb

3. Heat Rejection

HR = D - A

= 61 Btu/lb

4. Mass flow Rate

Spessification volume enter compressor from table (Superheated vapor & absolute pressure)

Mass flow rate = <u>Actual comp display x comp Vol Efficiency</u>

Spessific volume entering compressor

= 144,7368421 lb/min

5. Coefficience of Preformance

CoP = RE / HC= 3,357142857

6. Compression ratio

- = Discharge Pressure / Suction Pressure
- = 4,380480905

7. Refrigerant capacity

Capasity = Mass Flow rate x RE= 418157,8947 Btu/h

AIR SIDE LOAD CALCULATION **Description Condensor**

Diameter area condensor	0,7	m
Jumlah fan condensor	2	Unit
FV (Kecepatan) Max	12,5	m/s
FV (Kecepatan) Min	10,8	m/s
Temperatur Ambient	33,9	°C
Temperatur Output Air	47,88	°C

Perhitungan Q Rejection

condensor	
Total face area condensor = 0.7693 m ²	
Face velocity rata rata = $11,65$ m/s	
Total AVF Condensor = $8,962345$ m ³ /	's
=	
Q Rejection = $M \times CP \times \Delta T$	
= 129864,2046 kcal	/h
= 515560,8925 Btu/	/h

Conclusion

In carrying out the test, you can adjust the specifications of the unit starting from its working current, the refrigerant used in the HVAC unit, motor power, cooling capacity and voltage which is 380 VAC to become 480 VAC, so the results are multiplied by 1.2.

Reference

- ASHRAE handbook fundamentals, American Society of Heating, Refrigeration and airconditioning Engineers, Inc, Atlanta
- 2000, ASHRAE handbook HVAC System and Equipment, American Society of Heating, -Refrigeration and air- conditioning Engineers, Inc, Atlanta.
- Dossat, R.J. (1996) "Modern Air Conditioning Practice", Third Edition, Mc. Graw Hill International **Book Company**
- Paul, Lang. (1968), "Basic Of Air Conditioning", Michigan: Delmar Publishers the University Of Michiga

JMM: Journal of Mechanical and Manufactur

e-ISSN: 2829-4424

Vol. 2 No 1, Oktober 2022 , pp. xx-xx

DOI: